3.6.17 \(\int \frac {(c+d x+e x^2+f x^3) (a+b x^4)^{3/2}}{x^3} \, dx\) [517]

Optimal. Leaf size=406 \[ \frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac {3}{4} a \sqrt {b} c \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {1}{2} a^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{5/4} \left (21 \sqrt {b} d+5 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}} \]

[Out]

-1/6*(-e*x^2+3*c)*(b*x^4+a)^(3/2)/x^2-1/7*(-f*x^2+7*d)*(b*x^4+a)^(3/2)/x-1/2*a^(3/2)*e*arctanh((b*x^4+a)^(1/2)
/a^(1/2))+3/4*a*c*arctanh(x^2*b^(1/2)/(b*x^4+a)^(1/2))*b^(1/2)+1/4*(3*b*c*x^2+2*a*e)*(b*x^4+a)^(1/2)+2/35*x*(2
1*b*d*x^2+5*a*f)*(b*x^4+a)^(1/2)+12/5*a*d*x*b^(1/2)*(b*x^4+a)^(1/2)/(a^(1/2)+x^2*b^(1/2))-12/5*a^(5/4)*b^(1/4)
*d*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4)*
x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/(b*x^4+a)^(1/2)+2/35*
a^(5/4)*(cos(2*arctan(b^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(b^(
1/4)*x/a^(1/4))),1/2*2^(1/2))*(5*f*a^(1/2)+21*d*b^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2)
)^2)^(1/2)/b^(1/4)/(b*x^4+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.23, antiderivative size = 406, normalized size of antiderivative = 1.00, number of steps used = 16, number of rules used = 15, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {1847, 1266, 827, 829, 858, 223, 212, 272, 65, 214, 1286, 1191, 1212, 226, 1210} \begin {gather*} \frac {2 a^{5/4} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (5 \sqrt {a} f+21 \sqrt {b} d\right ) F\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}}-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \text {ArcTan}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}-\frac {1}{2} a^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {\left (a+b x^4\right )^{3/2} \left (3 c-e x^2\right )}{6 x^2}+\frac {1}{4} \sqrt {a+b x^4} \left (2 a e+3 b c x^2\right )+\frac {3}{4} a \sqrt {b} c \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {\left (a+b x^4\right )^{3/2} \left (7 d-f x^2\right )}{7 x}+\frac {2}{35} x \sqrt {a+b x^4} \left (5 a f+21 b d x^2\right )+\frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^3,x]

[Out]

(12*a*Sqrt[b]*d*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) + ((2*a*e + 3*b*c*x^2)*Sqrt[a + b*x^4])/4 + (2*
x*(5*a*f + 21*b*d*x^2)*Sqrt[a + b*x^4])/35 - ((3*c - e*x^2)*(a + b*x^4)^(3/2))/(6*x^2) - ((7*d - f*x^2)*(a + b
*x^4)^(3/2))/(7*x) + (3*a*Sqrt[b]*c*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]])/4 - (a^(3/2)*e*ArcTanh[Sqrt[a + b*
x^4]/Sqrt[a]])/2 - (12*a^(5/4)*b^(1/4)*d*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*E
llipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a + b*x^4]) + (2*a^(5/4)*(21*Sqrt[b]*d + 5*Sqrt[a]*f)*(S
qrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2
])/(35*b^(1/4)*Sqrt[a + b*x^4])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 272

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 827

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(e*f*(m + 2*p + 2) - d*g*(2*p + 1) + e*g*(m + 1)*x)*((a + c*x^2)^p/(e^2*(m + 1)*(m + 2*p + 2))), x] + Di
st[p/(e^2*(m + 1)*(m + 2*p + 2)), Int[(d + e*x)^(m + 1)*(a + c*x^2)^(p - 1)*Simp[g*(2*a*e + 2*a*e*m) + (g*(2*c
*d + 4*c*d*p) - 2*c*e*f*(m + 2*p + 2))*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2,
0] && RationalQ[p] && p > 0 && (LtQ[m, -1] || EqQ[p, 1] || (IntegerQ[p] &&  !RationalQ[m])) && NeQ[m, -1] &&
!ILtQ[m + 2*p + 1, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])

Rule 829

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(d + e*x)^(m
 + 1)*(c*e*f*(m + 2*p + 2) - g*c*d*(2*p + 1) + g*c*e*(m + 2*p + 1)*x)*((a + c*x^2)^p/(c*e^2*(m + 2*p + 1)*(m +
 2*p + 2))), x] + Dist[2*(p/(c*e^2*(m + 2*p + 1)*(m + 2*p + 2))), Int[(d + e*x)^m*(a + c*x^2)^(p - 1)*Simp[f*a
*c*e^2*(m + 2*p + 2) + a*c*d*e*g*m - (c^2*f*d*e*(m + 2*p + 2) - g*(c^2*d^2*(2*p + 1) + a*c*e^2*(m + 2*p + 1)))
*x, x], x], x] /; FreeQ[{a, c, d, e, f, g, m}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] && (IntegerQ[p] ||  !R
ationalQ[m] || (GeQ[m, -1] && LtQ[m, 0])) &&  !ILtQ[m + 2*p, 0] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*
m, 2*p])

Rule 858

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_.), x_Symbol] :> Dist[g/e, Int[(d
+ e*x)^(m + 1)*(a + c*x^2)^p, x], x] + Dist[(e*f - d*g)/e, Int[(d + e*x)^m*(a + c*x^2)^p, x], x] /; FreeQ[{a,
c, d, e, f, g, m, p}, x] && NeQ[c*d^2 + a*e^2, 0] &&  !IGtQ[m, 0]

Rule 1191

Int[((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[x*(d*(4*p + 3) + e*(4*p + 1)*x^2)*((a
+ c*x^4)^p/((4*p + 1)*(4*p + 3))), x] + Dist[2*(p/((4*p + 1)*(4*p + 3))), Int[Simp[2*a*d*(4*p + 3) + (2*a*e*(4
*p + 1))*x^2, x]*(a + c*x^4)^(p - 1), x], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && GtQ[p, 0] &
& FractionQ[p] && IntegerQ[2*p]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1266

Int[(x_)^(m_.)*((d_) + (e_.)*(x_)^2)^(q_.)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m
 - 1)/2)*(d + e*x)^q*(a + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, c, d, e, p, q}, x] && IntegerQ[(m + 1)/2]

Rule 1286

Int[((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^2)*((a_) + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Simp[(f*x)^(m + 1)*(a +
 c*x^4)^p*((d*(m + 4*p + 3) + e*(m + 1)*x^2)/(f*(m + 1)*(m + 4*p + 3))), x] + Dist[4*(p/(f^2*(m + 1)*(m + 4*p
+ 3))), Int[(f*x)^(m + 2)*(a + c*x^4)^(p - 1)*(a*e*(m + 1) - c*d*(m + 4*p + 3)*x^2), x], x] /; FreeQ[{a, c, d,
 e, f}, x] && GtQ[p, 0] && LtQ[m, -1] && m + 4*p + 3 != 0 && IntegerQ[2*p] && (IntegerQ[p] || IntegerQ[m])

Rule 1847

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Module[{q = Expon[Pq, x], j, k}, Int[
Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {
j, 0, n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0] &&  !PolyQ[Pq, x^(n/2)]

Rubi steps

\begin {align*} \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^3} \, dx &=\int \left (\frac {\left (c+e x^2\right ) \left (a+b x^4\right )^{3/2}}{x^3}+\frac {\left (d+f x^2\right ) \left (a+b x^4\right )^{3/2}}{x^2}\right ) \, dx\\ &=\int \frac {\left (c+e x^2\right ) \left (a+b x^4\right )^{3/2}}{x^3} \, dx+\int \frac {\left (d+f x^2\right ) \left (a+b x^4\right )^{3/2}}{x^2} \, dx\\ &=-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac {1}{2} \text {Subst}\left (\int \frac {(c+e x) \left (a+b x^2\right )^{3/2}}{x^2} \, dx,x,x^2\right )-\frac {6}{7} \int \left (-a f-7 b d x^2\right ) \sqrt {a+b x^4} \, dx\\ &=\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}-\frac {2}{35} \int \frac {-10 a^2 f-42 a b d x^2}{\sqrt {a+b x^4}} \, dx-\frac {1}{4} \text {Subst}\left (\int \frac {(-2 a e-6 b c x) \sqrt {a+b x^2}}{x} \, dx,x,x^2\right )\\ &=\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}-\frac {\text {Subst}\left (\int \frac {-4 a^2 b e-6 a b^2 c x}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )}{8 b}-\frac {1}{5} \left (12 a^{3/2} \sqrt {b} d\right ) \int \frac {1-\frac {\sqrt {b} x^2}{\sqrt {a}}}{\sqrt {a+b x^4}} \, dx+\frac {1}{35} \left (4 a^{3/2} \left (21 \sqrt {b} d+5 \sqrt {a} f\right )\right ) \int \frac {1}{\sqrt {a+b x^4}} \, dx\\ &=\frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{5/4} \left (21 \sqrt {b} d+5 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {1}{4} (3 a b c) \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,x^2\right )+\frac {1}{2} \left (a^2 e\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x^2}} \, dx,x,x^2\right )\\ &=\frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{5/4} \left (21 \sqrt {b} d+5 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {1}{4} (3 a b c) \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {x^2}{\sqrt {a+b x^4}}\right )+\frac {1}{4} \left (a^2 e\right ) \text {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^4\right )\\ &=\frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac {3}{4} a \sqrt {b} c \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{5/4} \left (21 \sqrt {b} d+5 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}}+\frac {\left (a^2 e\right ) \text {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^4}\right )}{2 b}\\ &=\frac {12 a \sqrt {b} d x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}+\frac {1}{4} \left (2 a e+3 b c x^2\right ) \sqrt {a+b x^4}+\frac {2}{35} x \left (5 a f+21 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (3 c-e x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}-\frac {\left (7 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{7 x}+\frac {3}{4} a \sqrt {b} c \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {1}{2} a^{3/2} e \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {12 a^{5/4} \sqrt [4]{b} d \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{5/4} \left (21 \sqrt {b} d+5 \sqrt {a} f\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{35 \sqrt [4]{b} \sqrt {a+b x^4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 10.55, size = 326, normalized size = 0.80 \begin {gather*} \frac {\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} \left (\left (a+b x^4\right ) \left (-210 a c+b x^4 \left (105 c+84 d x+70 e x^2+60 f x^3\right )+20 a x (-21 d+x (14 e+9 f x))\right )+315 a \sqrt {b} c x^2 \sqrt {a+b x^4} \tanh ^{-1}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-210 a^{3/2} e x^2 \sqrt {a+b x^4} \tanh ^{-1}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )\right )+1008 a^{3/2} \sqrt {b} d x^2 \sqrt {1+\frac {b x^4}{a}} E\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )-48 i a^{3/2} \left (-21 i \sqrt {b} d+5 \sqrt {a} f\right ) x^2 \sqrt {1+\frac {b x^4}{a}} F\left (\left .i \sinh ^{-1}\left (\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x\right )\right |-1\right )}{420 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}} x^2 \sqrt {a+b x^4}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^3,x]

[Out]

(Sqrt[(I*Sqrt[b])/Sqrt[a]]*((a + b*x^4)*(-210*a*c + b*x^4*(105*c + 84*d*x + 70*e*x^2 + 60*f*x^3) + 20*a*x*(-21
*d + x*(14*e + 9*f*x))) + 315*a*Sqrt[b]*c*x^2*Sqrt[a + b*x^4]*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x^4]] - 210*a^(
3/2)*e*x^2*Sqrt[a + b*x^4]*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) + 1008*a^(3/2)*Sqrt[b]*d*x^2*Sqrt[1 + (b*x^4)/a]*
EllipticE[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1] - (48*I)*a^(3/2)*((-21*I)*Sqrt[b]*d + 5*Sqrt[a]*f)*x^2*S
qrt[1 + (b*x^4)/a]*EllipticF[I*ArcSinh[Sqrt[(I*Sqrt[b])/Sqrt[a]]*x], -1])/(420*Sqrt[(I*Sqrt[b])/Sqrt[a]]*x^2*S
qrt[a + b*x^4])

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.42, size = 350, normalized size = 0.86

method result size
elliptic \(-\frac {a c \sqrt {b \,x^{4}+a}}{2 x^{2}}-\frac {a d \sqrt {b \,x^{4}+a}}{x}+\frac {b f \,x^{5} \sqrt {b \,x^{4}+a}}{7}+\frac {b e \,x^{4} \sqrt {b \,x^{4}+a}}{6}+\frac {b d \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {b c \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 f a x \sqrt {b \,x^{4}+a}}{7}+\frac {2 a e \sqrt {b \,x^{4}+a}}{3}+\frac {4 a^{2} f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 a \sqrt {b}\, c \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{4}+\frac {12 i a^{\frac {3}{2}} \sqrt {b}\, d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {a^{\frac {3}{2}} e \arctanh \left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{2}\) \(344\)
default \(f \left (\frac {b \,x^{5} \sqrt {b \,x^{4}+a}}{7}+\frac {3 a x \sqrt {b \,x^{4}+a}}{7}+\frac {4 a^{2} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+c \left (\frac {b \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 a \sqrt {b}\, \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}-\frac {a \sqrt {b \,x^{4}+a}}{2 x^{2}}\right )+e \left (\frac {b \,x^{4} \sqrt {b \,x^{4}+a}}{6}+\frac {2 a \sqrt {b \,x^{4}+a}}{3}-\frac {a^{\frac {3}{2}} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\right )+d \left (-\frac {a \sqrt {b \,x^{4}+a}}{x}+\frac {\sqrt {b \,x^{4}+a}\, b \,x^{3}}{5}+\frac {12 i a^{\frac {3}{2}} \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )\) \(350\)
risch \(-\frac {a \sqrt {b \,x^{4}+a}\, \left (2 d x +c \right )}{2 x^{2}}+\frac {b f \,x^{5} \sqrt {b \,x^{4}+a}}{7}+\frac {3 f a x \sqrt {b \,x^{4}+a}}{7}+\frac {4 a^{2} f \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{7 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {e \sqrt {b \,x^{4}+a}\, \left (-b \,x^{4}+2 a \right )}{6}+\frac {b d \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {3 i \sqrt {b}\, d \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 i a^{\frac {3}{2}} \sqrt {b}\, d \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (\EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-\EllipticE \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b c \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 a \sqrt {b}\, c \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}+a e \sqrt {b \,x^{4}+a}-\frac {3 i \sqrt {b}\, d \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \EllipticF \left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {a^{\frac {3}{2}} e \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\) \(500\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^3,x,method=_RETURNVERBOSE)

[Out]

f*(1/7*b*x^5*(b*x^4+a)^(1/2)+3/7*a*x*(b*x^4+a)^(1/2)+4/7*a^2/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^
2)^(1/2)*(1+I/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I))+c*(1/4*b*x^
2*(b*x^4+a)^(1/2)+3/4*a*b^(1/2)*ln(x^2*b^(1/2)+(b*x^4+a)^(1/2))-1/2*a/x^2*(b*x^4+a)^(1/2))+e*(1/6*b*x^4*(b*x^4
+a)^(1/2)+2/3*a*(b*x^4+a)^(1/2)-1/2*a^(3/2)*ln((2*a+2*a^(1/2)*(b*x^4+a)^(1/2))/x^2))+d*(-a*(b*x^4+a)^(1/2)/x+1
/5*(b*x^4+a)^(1/2)*b*x^3+12/5*I*a^(3/2)*b^(1/2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I
/a^(1/2)*b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*b
^(1/2))^(1/2),I)))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^3,x, algorithm="maxima")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + x^2*e + d*x + c)/x^3, x)

________________________________________________________________________________________

Fricas [F]
time = 0.25, size = 59, normalized size = 0.15 \begin {gather*} {\rm integral}\left (\frac {{\left (b f x^{7} + b e x^{6} + b d x^{5} + b c x^{4} + a f x^{3} + a e x^{2} + a d x + a c\right )} \sqrt {b x^{4} + a}}{x^{3}}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^3,x, algorithm="fricas")

[Out]

integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d*x + a*c)*sqrt(b*x^4 + a)/x^3, x)

________________________________________________________________________________________

Sympy [A]
time = 5.17, size = 377, normalized size = 0.93 \begin {gather*} - \frac {a^{\frac {3}{2}} c}{2 x^{2} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {a^{\frac {3}{2}} d \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {a^{\frac {3}{2}} e \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2} + \frac {a^{\frac {3}{2}} f x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {\sqrt {a} b c x^{2} \sqrt {1 + \frac {b x^{4}}{a}}}{4} - \frac {\sqrt {a} b c x^{2}}{2 \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {\sqrt {a} b d x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {\sqrt {a} b f x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {9}{4}\right )} + \frac {a^{2} e}{2 \sqrt {b} x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} + \frac {3 a \sqrt {b} c \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4} + \frac {a \sqrt {b} e x^{2}}{2 \sqrt {\frac {a}{b x^{4}} + 1}} + b e \left (\begin {cases} \frac {\sqrt {a} x^{4}}{4} & \text {for}\: b = 0 \\\frac {\left (a + b x^{4}\right )^{\frac {3}{2}}}{6 b} & \text {otherwise} \end {cases}\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**3,x)

[Out]

-a**(3/2)*c/(2*x**2*sqrt(1 + b*x**4/a)) + a**(3/2)*d*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(
I*pi)/a)/(4*x*gamma(3/4)) - a**(3/2)*e*asinh(sqrt(a)/(sqrt(b)*x**2))/2 + a**(3/2)*f*x*gamma(1/4)*hyper((-1/2,
1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(5/4)) + sqrt(a)*b*c*x**2*sqrt(1 + b*x**4/a)/4 - sqrt(a)*b*c*x
**2/(2*sqrt(1 + b*x**4/a)) + sqrt(a)*b*d*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x**4*exp_polar(I*pi)/a)/
(4*gamma(7/4)) + sqrt(a)*b*f*x**5*gamma(5/4)*hyper((-1/2, 5/4), (9/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(9/4
)) + a**2*e/(2*sqrt(b)*x**2*sqrt(a/(b*x**4) + 1)) + 3*a*sqrt(b)*c*asinh(sqrt(b)*x**2/sqrt(a))/4 + a*sqrt(b)*e*
x**2/(2*sqrt(a/(b*x**4) + 1)) + b*e*Piecewise((sqrt(a)*x**4/4, Eq(b, 0)), ((a + b*x**4)**(3/2)/(6*b), True))

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^3,x, algorithm="giac")

[Out]

integrate((b*x^4 + a)^(3/2)*(f*x^3 + x^2*e + d*x + c)/x^3, x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (b\,x^4+a\right )}^{3/2}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^3} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^3,x)

[Out]

int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^3, x)

________________________________________________________________________________________